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CHAPTER 4.

THEORY AND EXPERIMENTAL RESULTS.

4.1. Relaxation time and line width in liquids (B 10, B 11).
4.1.1. The Fourier Spectrum of a random 'funciion.

In chapter 2 a general theory for the relaxation time was presented.
In order to apply it to practical cases we have to evaluate the Fourier
spectra of the functions of the position coordinates Fy, F; and F, of
section 2. 5. o

In a liquid these functions will vary in a random fashion with time,
as the particles containing the magnetic nuclei take part in the Brownian
motion. The fluctuating functions Fy(¢), F,(t) and F(t) satisfy the
condition ' :

Re F() = Im F()=0 (4. 1)

The statistical charécte; of the motion justif_ies an assumption, custom-
ary in the theory of fluctuation phenomena, that -

FOF ¢+9=k(1c]> -~ (4.2)

The left hand side is called the correlation tunction of F(t).

The correlation function of the random function F(t) is independent
of t and an even function of 7. From these assumptions it follows immedia-
tely that k () is real. We shall now derive briefly the relation between this
correlation function and the intensity of the Fourier spectrum of F(t).
A very general theory of random processes has been given by Wang
and Uhlenbeck (W 2, R 4), where the reader may find further
references. Many other investigators have pointed out the connection
between the spectrum and the correlation function. We shall here follow
closely Keller's (K1) argument, “although there are some slight
modifications, as we want to distinguish between positive and negative
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frequencies and our function F(¢) is complex. Expand F(t) in a Fourier
integral '

—_ wv 2nivey,,
F(® _lA()e d “.3)

A@)éfﬁ*(r)r“”fd:

We assume that F(¢t) = O for |t| > T, where T is a time large
compared to all times in which we ever have made or shall make obser-
vations. This assumption therefore will not alter the physical results,
and in the end we can get rid of it by taking the limit T — 0. Between the
functions connected by the transformation of Fourier (4.3) exists the
Parseval relatior ’

S 0 )
[FoF@de=[A06) A" 6)d> (4.4)
With (4.3) and our assumption we can write this in the form

4w 4T4T » ,
F(§) F* ()= 2—17_00[ dv [ [FOF ()e? "= dedd  @4.5)

We next make the substitutions. 6 == ¢ and r=r¢ —¢'. Using the fact

that F(o) F*'(6 — t) is only different from zero for small values of ||
at any rate much smaller than T, we obtain after some calculation

F® F*(t)fJ_c?_::T[“:z""” F(o)F*(c—7)dt

(4. 6)
+eo
=[J0)dv
—00
with the expression for the spectral. intensity .
' +o .
Jp)=/k @) 2™ d 4.7)
- o]

Since k(7) is real and even, J(») is real and even. Because we made
a distinction between positive and negative frequencies, the intensity in » ( )
(4.7) is half the value usually found in the literature. In the following
discussion we shall see that k() often has the form:
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k@=F (@ F* (fexp{— |7/} (4. 8)
The combination of (4.7) and (4.8) yields

JO=2FHF .

T dn n (4.9)

In general we can say that k(z) is a function which goes rapidly to
zero, if |71 exceeds a value 1. which is characteristic for the mechanism
of the Brownian motion and is called the correlation time. The general
behaviour of the Fourier spectrum is therefore such that the intensity J(»)
is practically constant for low frequencies and falls off rapidly, when

2nvt, > 1. The time average F(t) F*(t) can be replaced by the sta-
tistical average according to a general theorem from statistical mechanics.

4.1.2. Evaluation of the relaxation time in water.

We start out with one water molecule, surrounded, say, by carbondi-
sulfide, which contains no nuclear magnetic moments. We assume that
the rotational magnetic moments of the molecules are also zero. We want
to calculate the relaxation time of one proton due to the presence of the
other. The functions F consist each of a single term:

F,=sindcosde'? [b° F,= siné,geZiq; /b8

where b is the constant distance between the two protons. The rotation
of the molecule in the liquid will change the angle between the magnetic
field H, and the radius vector connecting the two protons in a random
fashion.

The correlation function of the expressions F can be calculated if we
adopt the same simple picture as D eby e (D 2)-did in his famous theory
of dielectric absorption and dispersion, namely a rigid sphere of radius a
in a medium of viscosity # and absolute temperature T. D e by e applies
to this model Einstein s theory (E1) of the Brownian motion. In
the case that no external forces besides the thermal collisions are present,
the probability to find a fixed axis of the sphere in the solid angle
sin $d 9 d ¢ is described by the ordinary diffusion equation

—_ ?_f_%_.?i)zpdf(o,@ 4.11)

- The diffusion constant D is given by the general expression
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D=kT/g

The damping constant 8 for the rotation of a sphere in a viscous
medium was calculated Uy Stokes: 8 = 8wy a.

The Laplacian 4 acts only on the angle variables ¢ and ¢.

A solution of (4.11) may be written in a series of spherical harmonics
Y,

.
, m.*

f::ZcI"m Yl'm(ﬁ' ®) e —tDI{I+1)/a?
Lm

At t = 0 the sphere is in the position §,, @, and f=28 (§ —3,).d(p — @,).
From this condition we find the coefficients

nldxn ’
Sm= Yim B @) /] Yy m® 9 Psinddddg

In order to find the correlation functlon F(0) F* () note that )
F,=b2Y) (% ¢) and F,=b-3Y, ,(3,9) ()

w2n 3
We have b® F*(f) //szlsun?dt?dqo—— c3 1€ —6D¢ta

The average has to be taken over all possible initial positions, i.e. over
&, and Pos
The final result is

6Dt
—_—T— - 2 e
FOFO=bVL, 0 V5 00 m)e » =gbfeth
RO O=15b7 4. 12
witht. =4z yna%/3k T 4. 13)

The characteristic time of Debye v we obtam by carrymg out the
same procedure for tl.e function cos % = Yy, ¢
The result is

t=4anadkT=31 (4. 14)

In Debye's theory  is the time in which an assembly of water mole-
cules, originally oriented by an electric field, loses its distribution around
a preferred direction by the Brownian motion, after the electric field has
been switched off. In our case t. is the time, in which a molecule is

-
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rotated by the Brownian motion over such an angle that the relative
position of the nuclei with respect to the external field and thus the
functions F have changed appreciably.

Using (4.5), (4.12) and the general formula (2.53) we find for the
relaxation time of a proton in a watermolecule

e

. 27
(llTl)mt _0'4314-‘1n27021¢2+ l:+|161n2 vozzc2$ 74h210(1p+l)b—6
‘ R (4. 15)

Substituting numerical values T = 300, » = 10—2 a = 1.5 X 103,
I, = 14 we find that 7. = 0.35 X 10~ sec, and since v, = 3 X 107
cycles/sec we have 2 7. v, << 1. We see from (4.15) that in this case
1T, is proportional to z, and we can write with (4. 15)

(1/Ty),,, =09 y* h* b—x, (4. 16)

The value of 1 =31, =~ 10— sec is in excellent agreement with ex-
perimental data on the dielectric absorption and dispersion in water at
microwave frequencies (C 5) .

Next we consider the practical case that the neighbours are not CS,
molecules, .but other HoO molecules. We can estimate the influence of
the other protons on the relaxation time in the following way.

Again the Brownian motion is responsible for the Fourier spectrum,
but the cause is now rather the relative translational motion of the mole-
cules than a rotation. Let us consider the protons in the other molecules

as independent of one another1). We ask for F(;) F (¢t + 1) and z. for
the protons in a spherical shell between r and r + dr around the proton
of which we wish to determine the relaxation process. A reasonable value
for 7. is apparently the time it takes for a molecule to travel over a
distance r. For in that time the relative position and with it the spin spin
interaction has changed appreciably. From the theory of Brownian motion
we have the expression for the mean square displacement of a particle

*=2kTr/p (4. 17)

1) It would be better to consider the molecules as independent and attribute to them a
moment 2 g, if the spins are parallel, or zero if they are antiparallel, and then apply tc
these moments the statistical weight of the parallel and antiparallel state. The same
answer would be obtained. In the preceding problem of the rotating molecule also ortho-
and para- states should have been distinguished. We shall come back to this question
at the end of chapter 5.
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where 8 is a damping constant. For a sphere in a viscous medium Stokes
derived f=6nna

If one prefers to use the diffusion constant D = k T{8, we find for
the correlation time

(te) ey, =%° [2D=112D (4. 18)

since r is the relative displacement of two particles in any direction.

To find F(t) F(t) we have to average the angular functions over the
spherical shell and multiply with the number of protons in the shell as
we treat them independently. Then we have to integrate over r to include
all other molecules, so approximately from 2a, the distance of closest
approach, to infinity. Using again (4.9) and (2.53) we find

) _ oo r# 7. 27 .
(T =167 Ny 0, U+ 1)) R s+ T

(4. 19)

In the integral we can neglect the term with »,% z.%in the denominators,
since 2 7.3, << 1for r < 10~7, and the most important contribution to
the integral comes from the nearest neighbours. Integration of (4.19)
then simply leads to '

(1T, =0973 813y NIk T (4.20)

Substituting numerical values in (4.16) and (4.20), a = 2 X108
b=1."5X 108, p=10"% N=7X10%, y=2.7 X 10*
we find :

(Ty),,, =5.2 sec. (T)),ypq = 10 sec. T; = 3.4 sec.

This valte is in good agreement with the experimental value of 2.3 sec.
In the case of a rotating sphere it was possible to calculate the correlation
fugction explicitly. Por the translational effect and the rotation of more
complicated molecules in liquids this would be very difficult. In these
cases one might assume formula (4.8) or a linear combination of them
with various7,. The correlation time 7. should be larger in more viscous
media as the molecular motion becomes slower. In the next section we
shall discuss the general relation between the relaxation and correlation
times and the viscosity.
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4.1.3. The relation between the relaxation time, the viscosity, the
correlation time and the Debye time.

There may be some doubt whether is is permissible to extend the
macroscopic notions of viscosity and diffusion to regions which contain
only a few atoms. The same objection can be raised against Debye's
theory. There, as in our case, the procedure is justified by its success.
Since we obtain the right order of magnitude for the relaxation time, we
might even inversely use the latter to extend our information regarding
the motion of the molecules. From our general considerations we would
expect that the relaxation time would decrease with increasing viscosity,
as long as the condition 2 v, 1.<<< 1 is satisfied. This is confirmed by
the experimental evidence in Table I and Table II.

Table 1
ir Relaxation time of protons at 29 Mc/sec in hydrocarbons at 20° C
Viscosity | Relaxation time
in centipoises in seconds
" Petroleumether 0.48 3.5
- Ligroin 0.79 1.7
O Kerosin 1555 0.7
Light machine oil 42 0.075
Heavy machine oil 260 0.013
Mineral oil 240 0.007
Table 11

Relaxation time of protons at 29 Mc/sec in polar liquids at 20° C

Viscosity Relaxation time
in centipoises in seconds

Diethylether - 0.25 3.8

Water 1.02 23

Ethylalcohol 12 2.2

Acetic acid 12 24

Sulfuric acid 25 0.7¢

Glycerin 1000 0.023
| The viscosities in table I were measured witl. a viscosimeter, (time of
%é flow measurement), those of table II were taken from the Physikalisch
) Chemische Tabelle.

We also measured the relaxation time in mixtures of water and glyce-
rin, of which the result is shown in fig. 4. 1.
The dependence of the relaxation time on the wviscosity is not quite the
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inverse proportionality, which one might infer from- (4. 16) and (4. 20).
The relaxation time in glycerin is only 10? times smaller than in water,
while the viscosity is 103 times larger. In the first place one can remark
that in goiug from one substance to another the quantities a b and N
change too. The deviation in sulfuric acid can so partly be understood
because the proton density in it is much smaller than in the other sub-
stances. But for the latter the density of nuclei nor the internuclear
distances b change very much from molecule to molecule. The molecular
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Fiqure 4.1.

The relaxation time of the proton resonance at 29 Mc/sec in mixtures
of water and glycerin.

diameter a changes of course, but this would cause a deviation from the
inverse proportionality with 7 in the direction opposite to that observed.
We can only say that our treatment of a molecule as a sphere with a
magnetic moment in the centre becomes very crude for large molecules,
each containing several protons. In the modern theory of the viscosity a
concept exists, that continually transitions are made between configura-
tions around a given molecule, which are more or less stable. The rate at

)
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which these changes in configurations take place determines our correla-
tion time r, which will depend tnerefore in a complicated manner on the
shape and size of the molecule. For the large chain-like molecules in the
hydrocarbons one has furthermore the possibility of bending and. twisting
of a molecule, which changes the relative position of the protons.in that
molecule, : o :

The reader may be reminded that similar difficulties arise in Debye’s

theory of dielectric dispersion. His time v determined experimentally, -

does not always correspond to the one calculated from (4. 14). Attempts
have been made to explain this deviation by taking into account the elec-
tric dipole interaction between the polar molecules and introducing diffe-
rent models for the electric local field. Note that glycerin which shows the
largest deviation in our case, also violates D e bye's formula (4.14) most
severely. We want to stress, however, that the Debye time z and our
correlation time 7. characterize different physical processes. Debye's
refers only to the orientation of the polar group in space, while for 7.
any relative reorientation between the magnetic nuclei must be considered.
The following formulation then seems appropriate. The characteristic
time z of Debye and the correlation time 7. in the magnetic local field
spectrum are proportional in one sample. They both vary in proportion
to /T, 'f the temperature of the sample is changed.

The proportionality constant between t and 1. varies from substance
to substance, depending on the detailed picture of the molecular motion
in each substance, but' the ratio will always be of the order of unity.
For the model of a sphere in.a viscous medium we have 3 . =1
Experimental values for the proportionality factor are given in section
4.3.1, ' | . |

We can obtain a better test.of the theory if we carry out measurements
of the relaxation time and line width in one substance at various tempe-
ratures. We shall first describe in some detail the behaviour of T, and
T, that must be expected from theory. Substitution of (4.9) and (4. 12)
into (2.54) and (2.53) leads to

B . ’.
I/T‘_KIE+4F?‘? T 6 zc_i] .21

1/7! T’l V —
l/Tﬂlz VKofl + 4222 72 T 2 d"l’ = 1.7(!-9 al'.c tg'z—f"% (4. 22)

: | “n Ty : s | %
with | K=Y I+ 1) (4. 23)
and’ S K, =3K, S (4.29)
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It has been assumed that the averaging over # could be carried out
independently. Use has been made of the relations (4.12). Furthermore
the formulae are written for a single  relaxation time r ~ cy/T.
Actually we have a distribution of relaxation times as we have seeu for
the translational effect in water. We should write instead of the constant
¢ the function c(A) and integrate over the parameter A. In most cases
the distribution will be narrow, since only the nearest neighbours contri-
bute strongly. Strictly speaking the constants K are functions of the
temperature, as they vary with the density of the sample, but this effect
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Figure 4. 2.

The theoretical behaviour of the relaxation time T, and T,, which is
a measure for the inverse line width.

is completely negligible. The simplifying assumptions now permit to point
out clearly the general behaviour of T and Ty, which are plotted as a
function of 7. in fig. 4.2. Here T is defined by (2.58).

For 4 n®»1,2 << 1, T, is inversely proportional to 7. and thus to 7/T,
and for 472227.2 >> 1 directly proportional. The plot on a double
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logarithmic scale therefore shows two straight lines making angles of 45
and 135° degrees with the x-axis.

In the transition region (4n® r.? »®=~ 1) T has a minimum value
(T)e = s Ky 7 (4.25)

for T, — 1/2 an Yo

The quantity Ty’ is a monotonic decreasing function of z. and reaches
an asymptotic value

(l/ Tgl ;symptotic = Vi/g_—K\) (4' 26)

for very long correlation times. This value is of course exactly the same
as the one we calculated for the static case (2.36) where the nuclei are
at rest. For 1 <<(Ty'), mpioe? T, is inversely proportional to 7.. The
horizontal distance between the points, where T, and T, bend over
respectively, is given by the ratio 27, (To)), 0ue = H,|H, . For
473212 << |, T, and T, are proportional and from (4. 21) and (4. 22)
we find for the proportionality constant

T, =Y,n T, 4. 27)

The line width is given by (2. 58) with one of the relations (3.22) or
(3.23). For4a®»®t.®>>1 we have '

T,~ T, | . (4.28)
for 4 n%%,% 1.2 << 1 we have with (4.27)
! T,=0.85T, (4. 29)

We must not attach too much weight to this particular ratio, for about
the limits in the integral in (4.22) we only know that they must be of the
order of magnitude of the line width expressed in cycles/sec. It might be
better to take theslimits as == 1/ T'; instead of = 1/n T;’. This would
not make any difference for long .'s, and does not affect the order
of magnitude for the region where T, and T} are proportional. We shall
see in the next paragraphs that the experimental ratio between T’ and T
is close to the value predicted by (4.28) and (4.29). On this basis the
resonance line in water e.g. with T, = 2.3 sec. should be very narrow
indeed. The width should be of the order of one cycle or about 10—
oersted. The experimental width is then, of course, determined by the
inhomogeneity in H, as we have already pointed out several times.
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4.1.4. Experimental results in ethyl alcohol and glycerin between
+ 60° C and —35°C.

In order to vary the temperature of the sample in the radiofrequency
coil, copper tubing (3mm inside diameter) was soldered around the
arounded shield of the radiofrequency coil (see fig. 3.8). To obtain
low temperatures acetone, cooled by dry ice, could flow through the
tubing from a container, which was placed above the magnet, under the
influence of the gravitational force. This acetone was not in direct contact
with the dry ice. For dissolved CO, would be set free, when the acetone
was warmed up in passing through the narrow tubing. This would prevent
a regular flow. The apparatus in the magnet gap and all other cold
parts were thermally insulated with glass wool and asbestos paper. The
temperature was measured by a copper-constantan thermo-element. One
contact point was breught in the liquid through the small cork stop closing
the thin walled glass tube which contained the sample. There was no
trouble of pick-up ot radio frequencies, since the coupling between the
leads of the thermo-element and the coil was very small indeed, as the
contact point was kept well outside the volume of the coil. The other
contact of the element was put in melting ice. The thermo — E.M.F.
was measured with a Leeds & Northrup type K potentiometer. The
element was calibrated at + 100° C, 0° C and —78° C, which checked
with the calibration data given in the Handbook of Chemistry and Phy-
sics, so that this table was used. The temperature of the sample could be
varied by changing the flow of the cooling liquid. The temperature
remained constant to within 0.5° C during the determination of each
saturation curve. The balance of the bridge was also stable, once thermal
equilibrium had been established To cover the range of higher tempera-
ture, the container was filled with iced water or hot water.

The variation of the viscosity with temperature was taken from the
Physikalisch-Chemische Tabelle. The data obtained with ethylalcohol at
two frequencies are shown in fig. 4. 3. The variation of the relaxation time
with viscosity is inversely proportional. The line drawn through the points
makes an angle of 135° with the x-axis. Although the variation in the vis-
cosity is not large, the points clearly indicate the theoretical behaviour, to
be expected for short z.. The real line width could not be measured. The
limit set by the inhomogeneity of the field is 0.015 oersted at 4.8 Mc/sec.
According to theory the line width should be much narrower than this.
As was pointed out in chapter 3, any systematic errors in the relative
determination of T cancel out in this case. More interesting are the
results for glycerin shown in fig. 4.4. The freezing point of this sub-
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stance is 18°.C, but it usually gets supercooled and very high viscosities
are obtained at low temperature, where the substance becomes almost
glasslike. The experimental points show that we have reached the region
where 22 v, 7, > 1. The drawn lines are theoretical curves. The observed
minima are somewhat flatter and on the low temperature side the points
do not quite fit a 45° line. This can, at least in part, be explained by a
distribution of correlation times 7, rather than the single value to which

|
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Figure 4. 3.

The relaxation time of the proton resonance in ethyl alcohol between
60° C and ~— 35° C. The straight line makes an angle of 45° degrees
with the negative x-axis.

the theoretical curves pertain. It- would be interesting to extend the
measurements to lower temperatures to get more information about this
distribution. The shift of the minimum with frequency is somewhat less
than predicted by (4.25). We find a factor 4 instead of 6. On the low
temperature side the relaxation time should be proportional to »* In-
stead of a factor 36 we find a factor 14. Again this deviatton can, at




140

' ‘0'2 :?-:D ° /

96

least partly, be understood by remarking that (4. 25) holds only in case
of a single cosrelation time, or it one wishes, of a single correlation
function. The data on the line width are plotted in the same diagram
with the aid of formula (3.22) for a Gaussian curve.

At room temperature the line is narrower than the inhomogeneity of
the external field. Extrapolation of the dotted line towards higher tempe-
ratures gives the ratio T/Ty’ = 1. In the region where T is proportional
to the viscosity and T, inversely proportional, the saturation of the line
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Figure 4. 4.

The relaxation time and the line width of the proton resoﬁanceinglycerlnbgtween 60° C and
350 C. The lines, drawn through the experimental points, have the theoretical form of fig. 4. 2.

always occurs at the same output power of the generator, that is at the
same density of the applied radio frequency field, as the product T T,
is constant. From the viscosity, measured at 20° C, it followed that the
glycerin used in the experiment was not pure and probably contaminated
with 2 % water. Experiments carried out with mineral oil gave similar
results both for the relaxation time and line width.
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4.1.5. The influence of paramagnetic ions.

So far we have consideéred the dependence of the relaxation time on r,
It is also possible, however, to bring about changes in the quantities K,
and K in (4.21) and (4.22) by mixing the substance with paramagnetic
jons. From (4.23) and (4.24) we see that the large y-values of the

“electronic moments will enhance the values of K; and K. The larger

interaction of the nuclear moment with the electronic moment will shorten
the relaxation time and enhance the line width, 7. remaining constant.
Let us consider an aqueous solution of ferric nitrate. We can calculate the
influence of the Fe+++ ions in the same way as we did, when we
estimated the contribution of the protons in other molecules to the relaxa-
tion time in pure water. An adapted formula (4. 20) would read

l/Tl = 12 7;9 7p2 7‘2“ nz Slon (Slon + l) Nlon 17/5 k T (4‘ 30)

This applies for ions of the iron-group, which are of the “spin-only”
type. For others we should replace y2 1*S,, (S..+ 1 by v

Of course we should add to (4.30) the contribution of the protons in
the solution, which in pure water are solely responsible for the relaxation
time. But as y2_is about 10¢ times larger than yp", the influence of the
paramagnetic ions is predominating even in a concentration of 10— N.
or 108 jons/cc. According to (4.30) the relaxation time should be inver-
sely proportional to the concentration and to the square of the magnetic
moment of the paramagnetic ions. In fig. 4.5 the results for three ions
are given. It appears that the curves, also to the absolute magnitude,
can be well represented by (4.30). Only for very low frequencies there
seems to be a deviation towards longer relaxation times. This is all the
more remarkable since the straight lines finally must bend over to the
left to the asymptotic value of 2.3 sec. in pure water. We do not know
if the effect is real. It certainly seems too big for a systematic error.
We would like to point out that (4.30) certainly needs some correction.
For while the motion of a watermolecule relative to the ion is still given
by (4.17) and (4.18), where a is. the radius of the watermolecule, the
distance of closest approach is determined by the radius of the ion and
its hydratation. We must insert a correction factor a/b. It is very hard
to estimate correctly the motion of a watermolecule in the dipole atmo-
sphere around an ion. But if there is an effect from the hydratation, it
should become more pronounced at small concentrations.

Furthermore we should take into account that the correlation time in
the Jocal field spectrum is not solely determined by the molecular motion
in the liquid, but also by changes in quantisation of the electronic spins,
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which possibility was already indicated in .(2.42). The characteristic
time for this latter process is not known experimentally, as the para-
magnetic electronic relaxation times g/2  in solutions are short, of the
order of 10—1° sec. ). This implies that in the derivation of (4.30) we
should have used for z. the constant o instead of (4.18) for values of
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Figure 4. 5.

The relaxation time of the proton resonance in aqueous solutions of
paramagnetic salts, The lines, drawn through the experimental points,
make angles of 45° with the negative X-axis.

r, where 7, would become larger than . This reduces only the influence
of the ions which are rather far away, so that this correction is not

1) One might be tempted to calculate p iri the same way as we did for the nuclear

relaxation time. However, more important than the magnetic interaction between the

spins will be the electric interaction in the polar liquid via the spin-orbit coupling. The
only experimental information, known to. the author, comes from Zavoisky (Z1).
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important. The inverse proportionality with p2, is rather well. realised
for some ions, and completely violated for others (Nit++, and especially

Cot+-and Fe(CN)g——=), as is shown in Table III.
TABLE IIf '
1 #.4 in Bohr magne- ,ue& in Bohr magne-
lon . tons from relaxation | tons from susceptibi-
experiments lity measurements
Ert+t 9.5 9.4
Fet ++ 6.3 . 59
ettt 47 38
Cut ™t 2.3 1.9
Nt Tt 2.1 32
Cot ¥ 1.3 4553
Fe(CN)y~ ™~ 0.12 24

The second column is computed with (4.30) from measurements of
the nuclear relaxation time in solutions of known concentration. The
values in the last column were taken from Gorter (G 3).

They were obtained from the measurement of the static susceptibility
of solutions (comp. V 1). The value for Fe(CNg)——— was taken from
measurements on solid K3Fe(CN)g (J 1). The large deviations for the
last three ions can be understood, because nondiagonal elements 1) con-
tribute greatly to the magnetic moment of these ions. With these elements
components of the local field spectrum are connected, which have a
higner frequency than v, + 1/r., where 1/r. is the limit where the local
spectrum caused by the Brownian motion drops off rapidly. Thus these
non-diagonal elements do not contribute to the nuclear relaxation mecha-
nism, and the pe for this process is correspondingly-smaller. The ex-
tremely small influence of Fe(CN)g——— is probably partly caused by
the six CN groups around the iron atom, so that the b is very large.
For variations of b for the various ions have not been taken into account
‘n Table III. :

Finally we may ask what the influence can be of oxygen gas dissolved
in water. The magnetic moment of Oy is 2.8. The maximum concentration
of dissolved O, in water at room temperature under 18 % of the atmo-
spheric pressure is 1.5 X 10'7 molecules/cc. The relaxation time, due to O»
alone, could not be 'smaller than 2.5 sec. The relaxation time in water
is therefore determined by the neighbouring protons and the dissolved

¥) For Cot++ and Fe (CN)e— — — even lmportant devnatlons from Curie's
law have been found,
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oxygen. In the determination of the absolute value of the relaxation time
(see chapter 3) distilled. water was used. As the distillation was not
done in vacuo, we have no guarantee that for pure water the relaxation
time is not somewhat longer. '

We now consider the line width in the solutions. As the correlation
time . in paramagnetic solutions is essentially the same as in water and
thus 4y 7,? 7.2 << 1, we expect that T, is proportional to T;. This is
confirmed by the experimental result in fig. 4. 6.. The line width, measured
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Figure 4.6.

The line width of the proton resonance in aqueous solutions of Fe(NOj)s. -
The quantity T, is inversely proportional to the line width, which appears
to be proportional to the concentration.

between the points of maximum slope in an assumed Gaussian, is 2y T,
and is proportional to the concentration. For small concentrations the
width is again too narrow to be measured. Comparison of fig. 4.5 and
4.6 yields Ty = 1/y Ty or Ty =2[3T;. The same ratic was found for
Cu++ solutions and is in good agreement with the value found in glycerin.

It may be well to point out here that the proton resonance in para-
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magnetic solutions appears to be shifted, because the field inside the
sample is different trom the field elsewhere in the gap. The microscopic
field inside the sample at the position of the protons always determines
the position of the proton resonance. We are interested in the field
produced by all paramagnetic ions at che position of a proton and not
of all but one at the position of another ion. It is not permissible to put

the macroscopic 17 inside the sample into the resonance condition (1.7)
One has to take the average microscopic field at the position of the
protons. At the same time we might mention another factor which changes
slightly the magnetic field experienced by a nucleus, namely the dia-
magnetism of the surrounding electrons. This effect has been calculated
by Rabi and coworkers and is very small for light elements (K 12).

4.1.6. The resonance of F19 and Li7 in liquids.

To compare the resonances of F19 and H' in a liquid compound, a
“Freon”, CHFCl,, monofluoro-dichloro-methane, was condensed in a
glass tube and sealed off. Both the H1 and F!¢ resonance were narrower
than the inhomogeneity in the field. The total intensity of the two lines
was the same (within 15 %) so that it was confirmed that F19 has the
same spin as the proton. The relaxation times were 3.0 sec. for H' and
2.6 sec. for F19. The v is 6.5 % smaller than yp, but the Fi9 nucleus
experiences a somewhat larger local field as its nearest neighbour is the
proton in the same molecule, while the proton has in turn the F19 nucleus.
We should expect on this basis the relaxation times to be the same, as
is confirmed within the experimental error.

Experiments were also carried out in solutions of KF. Since the signal
to noise ratio drops proportional to the number of nuclei per cc, only
very concentrated solutions could be investigated to obtain . sufficiently
intense F19 resonance. Again the resonance lines are narrow. The result
for the relaxation times is shown in fig. 4. 7. The decrease in the proton
relaxation time can be explained by the increase in. viscosity of the
concehtrated solution. The much more pronounced decrease for fluorine
may be an indication that the motion of these ions is more quenched, when
one comes very close to the transition point, where the solution changes
into the solid hydrate KF.2H,O. A more careful study of the nuclear
relaxation might give information about the character of this. and other,
transitions. Anticipating the results for solids we can say that in the
crystalline KF.2H,,O the lines are wide and that we are in the region
where 4 7% ¢, * v >>1. ‘

An interesting substance is also BeFy, which can be mixed with water
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in any proportion. For high concentrations the substance becomes very
viscous, and finally goes. over into the glasslike, amorphous BeFj;, when

no water is present. Preliminary experiments showed that the behaviour -

of both the proton and the fluorine resonance in' Be Fy.+ H,O is similar
to that of the proton resonance in glycerin. With increasing viscosity of
the mixture the relaxation time first drops to about 103 sec., then rises
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Pigure 4.7.

The relaxation time of the proton and fuorine resonance in agqueous
solutions of K F of various concentrations.

again to 0.2 sec in pure BeF,. The line width measured between the
points of maximum slope increases from very small values to about
10 oersted in pure BeF,.

Experiments on the Li7 resonance were carried out at 14.5 Mc/sec

@




147.

103
~TABLE IV.
7 , , Nurﬁber of Li atoms E‘Relaxatior.; fiﬁ;e. in' seconds
Substance : —
: +| Number of H atoms for Li? .- for H.. .
"LiCl+ H;O ' » 58 1.75 A 04
LiNO, + H,0 14 27 | 1 .
LiNO; + H;O -+ Fe(NOy), 3 o1 ©0.0023
LiCl + H,0 + CrCl, 6.5 0.24 0.009*
LiCl + H,o + CuSO4 6.6 0.18 0. 013

in’ solutions of LiCl and L1N03 Table IV gives some’ results. For
the - solutions - without - paramagnetic ions the decrease in relaxation
time of the proton resonance compared to pure water can be explained
by an increase in viscosity of the concentrated solutionis. The relaxation
time for Li7 in this case is somewhat longer. The ratio of the local fleld
spectra is given by :

Spectral intensity at Li7 nucleus (T1 72)

‘Spectral intensity at proton (T1 72 )'L,

Since y 2 Jy;* = 6.6, the local field has a somewhat higher intensity
at the Ll—nucleus The cause could be the slower motion of the largely
hydrated Li-ion. A more likely explanation however, is, as we shall see
later, that the intensity of the magnetic local field is the same, or even
smaller but that there is a contribution to the relaxation process from
the quadrupole moment of Li?, which has a spin [ = 38/5.

Tle influence of paramagnetic ions is much smaller on Li? than on-the
protons. In the first place the local field spectrum at the Li? nucleus will
be smaller because the repulsion of two positive ions will make it less
likely for them to come close together, and then they have to compete
with the quadrupole transitions (cf. chapter 5). At the conclusion of
this paragraph we direct the attention of the reader to the results found
by other investigators (B2, B7, R5), which seem to be in agreement
with the general ideas, here proposed. Especially we might mention the

" experiment in liquid hydrogen by Rollin (R 6).

4.2, The relaxation time and line width in gases

4.2.1. Hydrogen

The only experiment of nuclear magnetic resonance (P 6) in gases
which has been reported was performed with hydrogen gas at room
temperature between 10 and 30 atmospheres of pressure. The accuracy
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was poor, as the density of the nuclei is low. It was found that the line
is narrow (< 0.15 versted) and that the relaxation time at 10'atmospheres
T, =~ 0.015 sec. with an indication that T, increases with increasing
pressure. We shall now investigate what the theory predicts for this case.

The local field at the position of a proton in an Hy-molecule in a
volume of hydrogen gas consists in the first place of the contribution

connected with the rotational moment 7 of the molecule and the
magnetic moment of the other proton. According to P auli's exclusion
principle the spins of the two protons can only be parallel, if the electronic
wave function is antisymmetric (] odd, orthohydrogen), and only anti-
parallel, if the electronic wave function is symmetric (] éven, parahydrogen)
The transitions from the ortho- to the para-state in hydrogen gas are
extremely rare. Furthermore, if the system is in thermal equilibrium at
room temperature, 13 % of the H, molecules have ] =0, 66 % have
J=1,12% have ] =2 and 9 % have J=3. We ignore for the sake
of the simplicity transitions from | =1 to | = 3. We assume that the
rotational angular momentum of orthohydrogen is a constant of the
motion. The total nuclear spin I = I; + I;, I = 0 for parahydrogen,
1 = 1 for orthohydrogen. Only orthohydrogen will show nuclear reso-
nance. At room temperature equilibrium the ratio of molecules in ortho-
and para-states is as 3 : 1. So the total intensity of the nuclear magnetic
absorption line is proportxonal to /8 NI(I + 1) Thls is equal to
(1/2 . 3/2)N. Thus the total intensity of the line of orthohydrogen is the
same as if all N protons were uncoupled in hydrogen atoms.

If the molecule is placed in a strong magnetic field, in zero approxima-
tion not only I and ], but also m; and my are constants of the motion.
We first consider the interaction of the nuclear spin with the rotational
moment. The perturbation term in the Hamiltonian is given by

Hop-:: rh H'-;-i

=4y W H e+ i) =i+ Uy — i)+ i) + yhH L],

(4.31)

From R a bi's experiments (K 3) follows the value of H’ ; the magnetic
field at the position of the protons produced by the rotation of the
molecule is 27 oersted. With (4.31) we can once more repeat the
reasoning explained In sections 2.4 and 2.5 in order to calculate the
relayation time. If the quantisation of } were fixed, that is if m; did not
change during collisions, we would have no transitions in m; ' For the
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first two terms on the left hand side in (4. 31), which have non-diagonal
elements in m, involve also a change in m;. But the collisions in the gas
will change m; and we can assume that after each collison m; has equal
chance for any of its 2] + 1 values. As the distribution of the collisions

" in time of a given molecule, measured from the time of the preceding

collision, is given by tlexp— t/t., where 1. is the mean collision time in the
[

gas, we have a Fourier spectrum for m; and thus for J, —iJ,. The
intensity of the spectrum of the latter is with (4. 9)

o= s .32

From this and (4. 31) we obtain a relaxation time

¢ g 1)
l/leﬁfn;,#‘?H’ypgl(lj) (4.33)

with t.=14/voN 4. 34)

The number of molecules per cc, proportional to the pressure, 1s
denoted by N, ¢ is the collision cross section, v is the average velocity of
the molecules. - :

To (4. 33) we have to add the contribution of the spin-spin interaction,
which is represented by the perturbation term

” —}',’h,’ - = = - - =
Hy' = —TE(II.n) (L, . n)— II.I,] (4.35)

. ,
where n is the unit vector pointing from one proton to the other, and ¢

is the distance between them. The expression (4.35) can be transformed

- -+ - -
to one which only contains constants and the operators | and I = I, + I,

H 1" ghgl I(I+1)+4II(IL+1)
op

= VS RT-1)2I+3)2)— V2] +3) 3L+ 1. ]J—P.]

(4. 36"

In order to find the contribution of this interaction to the relaxation
process, we have to write the operator between square brackets in the
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my, my representation. R abi and collaborators (K 4) found that this
operator is equal to .- :

MBI U+ BL — I+ 0+ Am=Am=0
2l U Ut i)+ U+ AL G —i L) + Ue— L)L)
o S —Am=t+Am=1
3 e U= I+ Ux— i L, (T i 1) + T + i1 1]
‘ Amp=—Amy=1

3o+ LR Jy— i) Amp=— Am=2

+ Ty —iLP e+ i = Am= Am]—-z
4. 37)

The matrix elements can be written down immediately with the rules
of matrix multiplication and the expressions (1,1), (1,2) and (1,3). The
matrix elements of (4.37) with "'AmI = 1 and 2, combined with the com~
ponents at v, and 2», of the frequency spectrum of the corresponding
terms in m; give an expression for 1Ty, WHiéH’mUSt"be added to (4.33).

“We write down the final result, first derived by Schwinger for

the case realized in practice that T i short compared to the Larmor
period 1/v,. Co

(/T — gas =27 7° B HAI + )+ 3R G U

(4. 38)

where H” = l 1/2yh is the effective field from one proton at the position

of the other. From R abi's experiments (K 3) follows H" = 34 oersted.
In (4.38) we have already asumed 4 #® v t.? << 1. This is always
fulfilled under practical conditions. The opposite case 4 72 »)® 7.2 >> 1
would occur at pressures of 1 mm Hg or less, where the signal is much
too small to be detected. From (4.38) and (4.34) it follows that the
relaxation time T is proportional to the pressure. Substituting numerical
values y, = 2.7 X 104, ] = 1, v, == 10—1! sec. (Handbook of Chemistry
and Physxcs) for a pressure of 10 atmospheres, we find Ty = 0.03 sec,
whlch is in agreement with the experxmental value

o

O

)




O

)

151

107

" The line width can be calculated on similar lines as we did in chapter 2
from (4.31) and (4:32). As in liquids we find again that T is of the
same order as T;, so that the resonance line should be very narrow. As
T, is proportional to T, the line width should be inversely proportional
to the pressure. We can speak of “pressure-narrowing” of the nuclear
resonance line in Hg-gas. o o
‘T’he conclusion is: The magnetic interactions in the Hy-molecule give,
rise to a fine structure of the radiofrequency spectrum in Rab i's mole~
cular beam method (K 3). Combined with the collisions in the gas sample
for pressures > 10 mm Hg, as used in Purcell’s method, they give
rise to a relaxation mechanism and the local fields average out to a single
very narrow line.

We have not considered the influence of the other molecules during a
collision on the relaxation time. In the next paragraph we shall see, that
this effect can usually be neglected in He-gas.

4.2.2. Helium.

An entirely different state of affairs occurs‘in the interesting case of
He3 gas. The atoms are in an S-state. The only perturbation is brought
about during the collisions by the nuclear magnetic moment of the col-
liding atom. Unlike in hydrogen, here the influence of the other molecules
is the only effect. Suppose that the He3 nucleus has the set of eigen-
functions ‘¥, in the constant field H,. We ask for the chance that the
perturbation by a collision brings the system from the initial state i with
energy E; to the final state | with energy E;. The perturbation method,
which may be applied, if the chance in one collision is small compared to
unity, gives for the probability to find the system in state [ after the
collision :

Ef—E
Sifl2 '—f“h——i‘ t

wf= (Ef—Ei)2 l(leopIi)r i | (‘139)

‘We cannot say precisely, what is going on during the ¢ollision. But

the order of magnitude of the matrix element of the perturbation operator
between the initial and final state will be the same as that of the inter-
action energy = 7, y, h* d*. The colliding particles have magnetpgyric
ratio's y; and yp and d is the distance of closest approach between the
moments during the collision. The time ¢, during which a strong inter-
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action takes place. is probably = 10— sec, at any rate t << h /E,—E;i=~
10--3 sec. We can therefore write ‘instead of (4. 39) :

we=7" " W t* d—* | (4. 40)

If v is the relative velocity of the colliding particles, we have ¢ ~ dfv.

We then multiply by the number of collisions per second 1/7. and find
for the relaxation time

T =2y p* RPd-tv=?r 1 (4. 41)

Substituting numerical values for He’ at room temperature and atmo-
spheric pressure, v = 1.4 X 105 cm/fsec., 7, = 2 X 10-" sec, d = 2 X
10—8 cm, y; = yo = 2.4 X 104, we »fi‘nd T, = 106 sec. In order to avoid
saturation during the resonance measurements it is therefore necessary
to admit oxygen gas. The magnetic moment of an O, molecule is about
10? times as large as of a He? atom.

Taking y; = 2.4 X 104, y, = 2.8 X 107, d = 2.5 X 10~* cm, 1. — 1010
sec we find for the relaxation time of He? resonance, if the partial
pressure of the oxygen is one atmosphere, T, =~ 1 sec. From (4.41)
and (4. 35) it follows that in this case the relaxation time is inversely
proportional to the pressure. Strictly speaking we ought to add a term
which is similar to (4.41) to (4.38) in the case of H,. From the order
of magnitudes, resulting from (4.38) and (4.41), we see that such a
term in pure- Hy, gas is completely negligible for pressures below 103
atmospheres. For O, pressures of 102 atmospheres, however, it is an im-
portant contribution. In general we can say that most gases, consisting
of molecules, will behave like hydrogen and show the ‘“‘anomalous”
pressure-narrowing. The noble gases, consisting of atoms in an S-state,
will behave like He3 and have pressure broadening.

We shall now derive the relation between T, and T, for the case
of He3. At the same time we obtain an independent derivation of the
saturation formula (2.64). The He-nuclei can be considered as com-
pletely free most of the time, but during each collision there is a small
chance for the nucleus to change its orientation. The probability w =
V4T, for suchra transition is given by (4.40). If a radio frequency field
H, is switched on at ¢ = 0, the free nuclei will oscillate between the upper
and lower state according to Rabi's formu]a (2.11), until the situation
is mterrupted by a thermal transition. We start out with the system of
nuclei in thermal equilibrium. The situation can be descrlbed by the
number of surplus nuclei, originally + n, in the lower state, oscillating

O
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between + n, and —n,, while the collisions tend to restore the equili-
brium value -+ n,. The probability that this is achieved in the time
interval between ¢ and ¢t + dtf is given by 1/T; exp(—¢/Ty) dt, as T,
is the average time and the distribution of gas kinetic collisions in time
is given by an exponential. The average energy dissipated from the spin
system and absorbed during the collisions is

n, h 1'00f w\/h — 1,

e de (4.42)
where wy, 1, is the probability that the surplus nuclei are in the upper
state at time ¢ (2.11).

After the eguilibrium has been restored, the process repeats itself.
In our description we have artificially broken up the natural process into
self repeating steps. In reality the individual nuclei each have a chance
to make transitions both up and down, with a preference for the latter.
The energy absorbed per second, which must be supplied by the radio
frequency field, is obtained if we multiply (4.42) by 1/T, the number
of times that the process is repeated per second. The integration over ¢ can
be evaluated by partial integrations. The absorbed power P is given by

22T, ‘
1+ 4a°T,* (»* + v — 2v v, cos 9)

P=n,hr} sin®* (4. 43)

Since always H,/H, << 1, we can put sin %~ H,/H, and cos ¢ =
1 — H */H?, y = 2 nvo/H,. Near resonance »==v, we then have

2T,

— 1 y ¥ 2
Pt mo bt B o — o T

4. 44)

which on comparison with (2.71) and (2.66) appears to be the Bloch
formula with Ty = To. '

It is interesting to apply the noise formula (3.21) to the case of He?
and see what the minimum detectable amount is. It is not justified, how-
ever, to put in that formula T, = T, since the line width will always be
determined by the inhomogeneity in the field. Using 10 atmospheres of
O, we have T, = 10! sec and we can take Ty/T, ~ 102

Substituting for g, A and F each 14 of their ideal values of unity and
taking Q = 102, y = 2.4 X 10% H, = 104, we find that 1 cc of He’ gas
at room temperature and atmospheric pressure would give a signal to
noise ratio about 5, if the indication time of the meter is one second.
In practice it would be very hard to find such a signal of such an extre-
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mely narrow line. One would have a better chance by searching for
the moment in liquid He3 at 1° K,

Added in the proof:

Very recently Anderson (A5) succeeded in measuring yg,s in a
mixture of He3 and O,, each at a partial pressure of 10 atmospheres.

4.3. The relaxation time and line width in solids.

4.3.1. Solids, to which the theory [or liquids is applicable.

In some solids there seems to be sufficient freedom of motion (S5)
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Pigure 4.8,

Values of the dielectric relaxation time 7 defined by Debye, in ice at

various temperatures. The points, indicated in the graph, are obtained

from measurements of the: anomalous dielectric dispersion in ice by
’ - ~Wiantsch.

for the particles, that we can apply the same theory as in liquids. This
state of affairs was already evident from the dielectric dispersion of the
D eby e type occurring in solids (D 2). The typical example is ice, of
which we show.the D e by e time 7 as a function of temperature in fig. 4.8.
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The data are calculated trom measurements by Wintsch (W5)
Of course, the molecules are not as tree as in water; 7 is about 10
times larger than in water. We expect then that the correlation
time 7. in the local field spectrum has increased by about the same
factor, so that the relaxation time in ice will behave in the same way as
in glycerin at low temperatures where 4 a%v,f7.% >> 1. In fig. 4.9 T4
in ice between —2° C and —40° C is shown as a function of the Debye
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Figure 4.9.

The relaxation time of the proton resonance in ice between — 2°C

and — 40°C, plotted against the Debye time z. The line dtawn

through the experimental points, makes an angle of 45° with the
positive X-axis.

time, to which . is proportional. The graph apparently confirms the
ideas set forth in the beginning of this chapter. The straight line drawn
through the points makes an angle of 45° with the x-axis. Unfortunately
we were not able to investigate the resonance in ice at 4.8 Mc/sec,
because the signal to noise ratio became too low in that case. We would
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expect, of course, the relaxation time to be shorter, but having the same
dependence on = :

Measurements of the line width yield values of -Ts, which are shown
in fig. 4.10. The drawn line is the theoretical curve computed from
(4.22). So here 7. becomes so large that we approach the asymptotic
value of the line width which should be, according to the graph, about
16 oersted for a Gaussian. This is in good agreement with the value
calculated from the crystal structure of ice (B 15), assuming that the
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Figure 4.10.

The line width of the proton resonance in ice between — 2°C and

- 40° C. 'The ‘theoretical curve (4. 22) for the quantity T,, which is

inversely proportional to the line width, is drawn -through the
experimental points.

auclei are at rest. In ice a translational motion of the molecules in a
viscous sirrounding is apparently ‘excluded. One might assume with
Debye a hindered rotation ofgthe HyO molecules in the crystalline
structure, although a more recent picture by Onsager suggests, that
chains of lined up dipoles will reorient themselves at the positions, where
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there are misfits with other chains. Either picture will produce the
required fluctuations in the local magnetic field and will only affect the
proportionality constant between r and r.. The best explanation for the
fluctuations in the local field are perhaps the transitions between the
two available positions for the proton in the O-H-O bond, as proposed
by Pauling (P 8). For comparison the results for alcohol, glycerin
and ice at 29 Mc are shown together in fig. 4.11. For glycerin we can
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Figure 4. 11.

The relaxation time T, of the proton resonance in ethyl alcohol, glycerin and ice at
29 Mc/sec between — 40° C and + 60° C.

determine the ratio /7. from comparison of the experimental result of the
minimum in the curve with formula (4.25). We find =. = 2. Then we
must have for alcohol 7, = 0.2 » and forice ., = 0.8 7. These results are
very satisfactory and must be considered as additional proof for our
theory.

We now give a very brief account of what can be expected in other
sohds with some preliminary experimental results to confirm our view.
Much more detailed investigations have to be carried out to refine the
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following global exposition. In hydrated paramagnetic salts like CuSOy.
5 H;O the field at the position of a proton will fluctuate, because the elec-
tron spins of the Cut+ ion change their quantisation with respect to -H,
at the rate of the short electronic relaxation times p, to which we must put
equal the correlation time r.. The proton resonance in CuSO,. 5 H,O
and CoSOy. 7 Hy,O show line widths of only 12—14 oersted, while the
instantaneous value of the internal fields in these paramagnetic salts is
several hundred oersted. This can be explained by the short r.. The high
intensity of local field, arising from the electronic moments, makes -the
relaxation time so short (< 3 X 10— sec), that we could not saturate the
proton line. :

In paraffin the relaxation time was found to be 0.01 sec. and the line
width 4.5 oersted. These data are in agreement with the estimates of
other investigators. In molten paraffin the line is narrow. Paraffin be-
haves again in a similar way as glycerin. In the solid state there still
must be an appreciable opportunity for motion, either rotation or twisting
or realignment, of the molecules. About the same as for solid paraffin
holds for the F19 resonance in teflon. This carbon fluoride compound
can be considered for our purpose as paraffin, in which the protons are
replaced by F19 nuclei.-

For the proton resonance in NH4C1 a relaxation time of 0.12 sec. at

+ 20° C and 0.015 sec at — 20° C was found. The line width at both
temperatures was 4 oersted. These results can probably be explained by
a hindered rotation of the NH, tetrahedron (S 5).

Very interesting experiments have been carried out by Bitter (B2,
A 1), who observed a sharp transition point in the line width of the
proton resonance in solid CHy, at the same temperature where there

“is known to be a transition point in the rotational degree ol freedom of

the molecule. The attention.of the reader is also called to the measure-
ments at very low temperatures by Rollin and collaborators (R 7).
Possibly the rotation of the hydrogen ‘molecule can be helpful in ex-
plaining the experlmental results in solid- ortho-hydrogen

4.3.2. Ionic crystals; the influence -of the lattice vibrations.
4.3.2.1. The relaxation time. | |

We now take up the question of the relaxation time in those crystals,
in which lattice vibrations are the only motion. For this cast the
theory of the relaxation time had been worked out by Waller (W1,
H 2), who considered the interaction of the magnetic moments with

‘the lattice vibrations. We shall show. that our.procedure, whlch gave

O
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the new results for liquids and gases, is essentially aequivalent to
W aller's considerations, when it is applied to crystals.

 For the lattice vibrations we shall adopt the same simplified picture,
which D e by e introduced in his theory of the specific heat of solids (S 5).
According to this picture there is an isotropic distribution of lattice oscil-
lators. In the volume V. of the crystal there are 4 m»? V/c3 oscillators
for one direction of polarisation in the frequency rangew, » + d».

Here ¢ denotes the velocity of propagation of elastic waves in the
crystal, which is taken to be the same for longitudinal and transverse
modes.

This formula is valid up to the frequency »_ determined by the equation

Ym
[127v* V. c3dv=3N (4. 45)
0

For » > »_ there are no lattice oscillators; (4.45) expresses that the
total number of oscillators is equal to the deqrees of freedom of the
system of N atoms.

We first consider the contribution of one neighbour j to the Fourier

spectrum of 2'sin 4;; cos &; ””'f/rsi

J
We take the z-axis in the direction of H, The radlus yvector
-> = =

Fij= j
kes an angle ¢ with the z-axis. The displacement u of the i** nu-
cleus from its equilibrium position by the lattice vxbratxons is

- -
u, =3 Agsin 2av (t— r;/c+ @p) (4. 46)
Vk
The relative displacement of the it and j® nucleus for waves propaga-

-
ting in the direction ofr, i

A=, z?.? Zicos2anlt—rnjcte)  (4.47)

since Ay = ¢/vy, >> r;; - The variation in

Fl — sin ‘\9‘]- cos 0i] ei q’ij/l'slj

can be expressed by a Tayle: series

— r, connecting the equilibrium positions of the two nuclei ma~
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SF, oF, ;rg (A2 +....(4 48)

d
AR="0 4% AB+ T2 Dy,

We dropped the subscripts i and j. For longitudinally polarjsed waves
we have only changes in r; for these Ar = (A u) long
The direction of polarisation of one of the transverse modes is taken in

—' .
the plane through r;; and the z-direction. For this mode we have

riyy A9=(Au) tr. L. For the second transverse mode we have
tgA ¢ = (A u) tr. U/rsin ¥ If A u << rsin?d we may write
rsind Ao =(Au) tr. II. Only for very small & .this relation is not
satisfied. For this last mode and very small values of & the expansion
(4.48) of F is not suitable.

To find the intensity J, (v) of the spectrum of F;, we have to deter-
mine the sum of the mean square deviations (A F,)2 in each of the
independent waves in the frequency interval », v + dv.

We can find an expression for the amplitude A; of each wave by
means of the aequipartition theorem, Each lattice vibrator has an energy

(3
Ay ket 1) For small v or large T this is equal to kT. Let M be the

mass of the crystal, o = M/V, the density. The equipartition theorem
can b. written with (4.46) as

hy - kT
hy )~2n9v"M‘

| A=
anng(ek—T——- 1

(4. 49)

We use the last approximation for the three first order terms in (4. 48).
These terms can be treated independently, as they belong to different
directions of polarisation. By squaring each of them and multiplying with
the number of oscillators, we find with (4.47, 4.48, 4. 49) for the
intensity of the spectrum of the first orders terms

v V. kT 1 ;
Jit)= —%— i ’w |:9 sin® #;; cos®¥;; + cos® 2%;; + cos’ 19,-1-:,
(4. 50)

A factor 1/; is inserted, because the two directions of wave propagation

- .
perpendicular to r, i do not contribute, as in those waves the two nuclei

have the same phase.
Now we can sum (4.50) over all nuclei j # i This is legitimate,

O
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although there are fixed phase relations between the deviations of the
nuclei in one wave. For the quantisation of the various nuclei is inde-
pendent, so that their fields aid or counteract at random. If we do not
have a single crystal we ‘can average over the angle &, which yields a
factor 2 for the expression between brackets in (4.50). The contribution
of the Z nearest neighbours at a distance a will be the most important.
Applying (2.53) we find for the relaxation time

Ty=4ay W2 I(I+ 1) Z k T vy*oc* a® (4. 51)

This result is essentially the sameas W aller's formula 51 (W 1, p. 386),
derived for the transition probability of electronic spins with I = 14.
If we take hv/kT<<1,y = 2 p/h and multiply Waller’s result by 2
to get 1/T';, we find that our numerical factor is 12z |5 times larger.
This difference could probably be explained by noting that W aller used
a more detailed picture for the lattice vibrations in a simple cubic lattice.
He followed Born's representation of coupled harmonic oscillators.
Furthermore W aller quantised the lattice oscillators. To Waller's
result and our formula (4.51) a contribution of the processes in whith
two spins flop simultaneously should be added. It will appear to be
much more important, however, to consider the influence of the second

O order terms in (4. 48). On substitution of (4.47) into these terms we see
that products of two harmonic functions are present and terms with
frequency , in the expression of AF; occur as the sum or the difference
of two frequencies # and »,. The whole spectrum of the lattice vibrations
is important for the second order spectral intensity of F. Since the
density of oscillators near the upper limit v is so much higher than
at the frequency »,, it will turn out that the second order contributions
are larger than the first order effects. We find by the same argument
which led to (4.50) for the contribution of. the first second order term
in (4.48) to the spectral intensity

3% 42 24.2 2,4 2
Jl//(v) -lsm"ﬂ C082t9 4 f f‘in (4 V h’Vl .47t, Vo Vch‘}’gdvl d‘l’g

18 Vgt e hwn hwn
0 & Mc*(ekT— 1) Mc®(ekT —1)
[ 4} 4 Y3 =¥
and, since vy << Vm
2 2 ™ e
32n%h? sin 0i.cosgt‘2-- v .
Jlm(”) ~ _—92 o0 Py -+ hv dv '(4' 52)
i 0 (ekT—1)2
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* Since -all frequencies up to ¥, are involved, we cannot make use of
of the condition x = h +"/ kT << 1, unless the temperature T is Jarge
compared to the Debye temperature @ =hv./k of the crystal. ‘The
relaxation time, determined by this second order process, is by the
same arguments which led to (4.51),

e ST
(k ) F X
0 ab B3 (e — 1) dx
0

-1/71__- PZI+1) 5 (4.53)

- To (4.53) should be added the result of the other second order terms

and the contribution of the double processes, in which two spins make a
simultaneous transition. The numerical factor in (4. 53) would become
somewhat larger But as it is, it is already 1872 X 192/245 larger than
in Waaller's formula 56 (p. 388) for the quantrsed lattice oscillators.
In the language of quantummechanics we can say that to (4. 53) corres-
pond transitions of the nuclear spin accompanied by the emission of a
phonon and the absorption of another in the lattice. One could develop
(4.48) to the third order terms, etc. It turns out that the contribution of
the successive hngher terms decreases as k T vadfg ¢t = 10-2; so they can
be neglected A A

We see from (4. 51) and (4 53) “that the first order transition pro‘
bablhty goes as T, the second order one as T2 for@/T~l but as T7
for e/T >>1. At room temperature the second order terms are more
important. Substituting numerical values p=2, c_..2>(10” vy =3 X 107,
a=2X10-% Z=6, y=3X,10%, T = 300°, ©® << T we find that
(T,) first order = ~ 1014 sec and (Tl) second order = 103 sec.

It was a surprise that, while % aller s theory predxcted such long
relaxation times for the nuclear magnetic resonance, the first experrmental
results gave much shorter times (10—2 sec in paraffin). We have shown
that in many solids the spectral intensity of the local field is caused by
other motions than -the lattice vibrations and that so many observed
relaxatlon times could be explained. In ionic crystals like Ca F,, however,
one would expect W aller s theory to be applicable. Nevertheless the
relaxation time for the F19 resonance in a single crystal of Ca Fy ap-
peared to be 8 sec. Relaxation times of the order of one second were also
found in powdered Al F; and Na F, and by other authors in.Li F. There
are some indications that impurities and lattice defects play an important
role in the relaxation process of these crystals (Compare the note at the
end of this chapter). '

O
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4.3.2.2. The line width.

The line width must be calculated from the components near zero
trequency in the spectrum of F, = 2'(1 —3cos* ‘9.‘1')/’311‘ .In the evaluation

t
we can safely neglect the small andj rapid lattice vibrations and assume
that the nuclei are at rest. For this static problem. the line width is given
by (2.36). It should be independent of the temperature, but vary with
the orientation of the axes of a single crystal with respect to the direction

of h_I: Experiments (P 5) with a single crystal of Ca Fp gave results
for the line width in accordance with. (2. 36) applied to the simple cubic
lattice of F19 nuclei, the Ca ions having no magnetic moment. A detailed
investigation of the line width in solids wiin special attention to the line
shape was made by Pake (P 1). In many compounds the same. element
can occur in more than one position in the unit cell of the crystal. When
these positions are not aequivalent with respect to the internal magnetic
field, one should distinguish more than one relaxation time and line widt.:
at the resonance of those nuclei. It is of no use, however, to discuss the
situation in crystalline solids in detail, before more experimental material
has become available.

Note added in the proof:

Recents experiments carried out in the Kamerlingh Onnes Laboratory
of the University of Leiden confirm the hypothesis that the relaxation
mechanism in ipnic crystals is determined by paramagnetic impurities.

A theory, taking these into account, gives for T a value of the order
of a few seconds, if the crystal is contaminated with 0.0001 % iron.
Furthermore this theory predicts that T should be largely independent
of the temperature of the lattice. These features are in striking contrast
with W aller's results for an ideal lattice and agree much better with
the experimental data (comp. R7). '

A full account of these researches will be given elsewhere.
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